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Abstract 

Crystallographic data concerning geometric properties 
of hexagonal lattices of C,~, Zn, B%, Ti,~, Zr~, Mg and 
Cd are obtained from two different computation 
techniques. These properties are related to the relative 
orientations of identical hexagonal lattices 1 and 2 
which superimpose two multiple cells M1 and M2 
within a given small deformation. These orientations 
are listed for ratios 27 = Ivolume of cells M1 (or 
M2)/volume of the unit cell l varying from 1 to 25. 
Their number are limited by choosing all the principal 
strains transforming M1 into M2 less than or equal to 
1%. 

Introduction 

Three techniques have been used to determine the 
relative orientations of identical hexagonal crystals 
which give rise to a near coincidence of two cells of the 
two crystal lattices 1 and 2, cells denoted hereinafter 
M 1 and M2 respectively. [This has been referred to by 
previous workers as a 'coincidence' or 'near-coinci- 
dence site lattice' or 'orientation de macle',* where the 
number 271 (or 2~2) is defined by the ratio volume of M1 
(or M2)/volume of the unit cell.] Two techniques 
depend either upon searching for vectors of common 
length arising from rational values of (c/a) 2 (Fortes, 
1973; Warrington, 1975) or in searching for coin- 
cidences arising from rotation about specific axes, 
chosen a priori, of (low) crystallographic index 
(Bruggeman, Bishop & Hartt, 1972). The first method 
derives from that used by Warrington & Bufalini 

* We note for the benefit of our readers whose mother tongue is 
English that the term 'orientation de macle' as defined by Friedel 
(1964) is more general a concept than the nearest English equivalent 
of ' twin'  used in its restrictive sense. 
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(1971) for cubic crystals; the second from the use of a 
'generation function' typified by Ranganathan (1966) 
and Goux (1961). The third technique (Bonnet & 
Cousineau, 1977), tested on Zn/Zn and NiaA1 (cubic)/ 
Ni3Nb(orthorhombic ), depends on a numerical method 
of calculation capable of treating the case of general 
lattices and envisaged in part by Santoro & Mighell 
(1973). It takes into account the experimental [rather 
than idealised or rational values of (c/a) 2] values of the 
lattice parameters. The technique determines relative 
orientations that, with additional imposed constraints 
(which may be chosen arbitrarily small) on M1, will 
give full or true coincidence with M2. 

Determination of relative orientations 

In searching for a 'constrained coincidence' the worker 
must compromise and set limits on the deviation from 
exact coincidence that is to be allowed. In the 
numerical method (Bonnet & Cousineau, 1977) this is 
represented by a maximum value of S = It, ll + l e21 + 
lea1 where e 1, e 2, e a are the principal strains of the pure 
deformation D transforming lattice 1 into lattice 2. D -~ 
transforms lattice 2 into a fictitious lattice denoted 
lattice 2', which can be exactly superposed onto lattice 
1 (Bonnet & Durand, 1975). The unit cell of this CSL 
(coincidence site lattice) is defined either by M1 or by 
the deformed cell M2, denoted MT.  In order to save 
computer time and attempt to make the search efficient, 
limits are set on A0, the value by which the angle of 
rotation about some determined axes is incremented, 
and on AU, the rounding term to obtain integer 
elements of the matrix l ulF1 transforming M1 into 
M2'. The determinant of this matrix, expressed in the 
coordinate system F1 attached to the hexagonal unit 
cell of lattice 1, is equal to 27~/2~ 2 (see the above 
reference). For identical crystals and small deviation 
from exact coincidence, 2:12 = 272 = 27. 
© 1981 International Union of Crystallography 
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To gain an insight into the relevant merits of the 
alternative methods, the results for C and for the 
hexagonal metals Zn,* B%, Ti,~, Zr,~, Mg, Cd were 
derived by the above technique and that of the rational 
(c/a) 2 route of Warrington (1975). The latter technique 
assumes that all constrained coincidences lie close to 
perfect coincidence of ideal crystals with nearby 
rational values of (c/a)2; it is necessary, of course, to 
search for all relevant values of (c/a) 2 that approxi- 
mate to within an arbitrary deviation from the 
experimental value. This value is measured with great 
accuracy for all the hexagonal crystals here chosen. 
The two techniques give consistent results and find all 
relevant coincidence provided that Au is made large 
enough and that the integer ratios (c/a) 2 contain all 
values up to sufficiently large integers. The tables 
presented show that, for example for zinc, it was 
necessary to increase Au from 0.3 to 0.4. On the other 
hand, many additional solutions for the necessary and 
quoted values of (c/a) 2 are found to be excluded from 
the table by the imposed condition of Sma x. 

Presentation of the results 

Tables 1 and 2 have been prepared using the crystal 
parameters reported by Donnay & Ondik (1973) 
except for Ti (Mitchell, 1979) and C,~ (Cullity, 1967), 
and the following values of calculation variables: 

B%, Ti,~, Zr,~ c/a = 1.589 + 0.004; 
Mg c/a = 1.624, Cd c/a = 1.885, C,~ c/a = 2.723; 
~r'ma x = 25 ,  AL = 0.5 A, Sma x = 0.021, Au = 0.4, 
AO = 0.003. 

For the rational (c/a) 2 technique all values of m/n 
where m and n are integers up to m -- 117 and n = 20 
were investigated; many ratios (typically from high m 
and n) where c/a lies within a deviation of the 
experimental value of c/a do not give rise to solutions 
for 2~ < 25. 

The values of the rotation axis and angle correspond 
to the disorientation value [i.e. the lowest rotation angle 
that may describe a given relative orientation provided 
that the axis lies within the unit stereographic triangle; 
since the two crystals are otherwise identical this 
includes, therefore, a reduction via the inverse rotation 
as well as all possible symmetry rotations, see, for 
instance, Mackenzie (1958) and Bonnet (1980)]. 

For a complete understanding of the geometric 
quantities mentioned in the tables, the reader must refer 
to the work of Bonnet & Cousineau (1977). [uvw] and 
0 d are the pairs of disorientation axis/angle for which a 
cell M2 is near coincident to a cell M1. The value e 
describes the intensity of the deformation, since in each 

* In Bonnet & Cousineau (1977), the two last solutions 2? = 21 
are equivalent. One of them has to be removed for the benefit of a 2? 
= 23 (c2/a 2 = 27/8) described in this paper. 

Table 1. Near-coincident cells for the hexagonal metals 
B%, Cd, Mg, Ti,~, Zn, Zr,~ and other related crystallo- 

graphic quantities 

The rotation axes and angles are expressed as disorientation values. 
Entries are ordered in increasing 2? value and increasing rotation 
angle except where, for a given rotation axis and more than one 
ideal c/a value, more than one CSL is produced at closely similar 
rotation angles. In such cases successive entries quote 2? values and 
rotation angles and the axis symbol is not repeated. The axis is not 
repeated where it is unchanged in succeeding entries in the column, 
thus four entries for Cd 7/2, 2?= 9 to Cd 18/5, X =  23 all share the 
same rotation axis [210]. The values of e quoted are for the metal 
appearing in the same line of column one. 

Crystals uvw e UF, 
(c/a) 2 27 Or(°) (xl03) (x2?) 

All 7 001 0 8 
3 5 

Any 21.79 0 0 

Be 5/2 7 210 2 7 0 
Ti 4 2 3 
Zr 64.62 7 2 4 

18/7 25 6 25 0 
711  

63.90 7 14 

Cd 7/2 9 210 6 9 0 
2 5 

56.25 2 4 

9 6 9 0 
2 5 

56-25 2 4 

22 6 22 0 
5 12 

56.94 5 10 

23 5 23 0 
5 1 3  

55.58 5 10 

9 100 - 2  9 : 2  
0 5 

56.25 0 4 

23 10 23 
0 1 3  

55.58 0 10 

9 100 10 9 
0 3 

70.53 0 4 

10 210 - 6  10 0 
4 2 

78.46 3 6 

11 100 6 11 
0 1 

84.78 0 5 

11 2 11 
4 0 1 

84.78 7 0 6 

13 8 13 
0 1 

85.59 0 6 

13 10 13 (~ 
7 0 1 

85.59 0 7 

24 1 24 11 
0 2 

85.22 0 11 

Zn 7/2 

Zn 17/5 

Cd 18/5 

Mg 21/8 

Mg 27/10 

Zn 27/8 

Mg 8/3 

Cd 18/5 

Be 5/2 
Ti 
Zr 

Cd 7/2 

Ti 18/7 
Zr 

Cd 39/11 

M1 DSC-1FI 
Ulrl (x27) 

0 0 3 1  3 1 0  
0 0 2 3  2 3 0  
7 1 0  0 0 0 7  

0 2 o i  0 0 ~  
1-0 i i 2  i 5  i 
3 0 1  1 I 2 1 

0 ~o i 0 02-3 
3-Z i l  0 i182-i 
11 0 i  z~ 1 7 ,~ 

o ~ o i  oo0 
1-~ i i  3 i 7  i 

5 0 1  1 1 2 1  

0 2 0 1  0 0 9  
lq I i  ~ i ? 1 

5 0 1  i l i  i 

0 2 0  0 0 0 2 2  
3-~ 1 1 9 i 1~20 
12 0 i  2 1 5 2 

0 2 0  i 0 0 2 3  
36 11 8 118 3 
13 0 i  3 i 5 3 

1 1 4  i 5 z~ 
1-4 0 1  7 2 i 8 

5 0 i  2 2 1 i 

1-8 i 1 9 1 17 9 
3-6 0 1 18 2 l 18 
13 0 i  5 2 i 5 

i l l  3 3 6 
1-8 0 3  3 6 3 
3 0 1  2 i i i 

0 2 0  0 0 0 1 0  
1--6 1 2  1 2 zi 6 
2 0 i  2 1 3 2 

1-~ i i 2  1 3 8 
2-4 0 2  5 2 5 

1 0 1  3 i 3 3 

1-0 l i  3 1 8 3 
2-0 0 2  5 2 5 

1 0 ]  3 1 3 3 

1-4 i i  3 i 1 0  
28 0 2  7 2 7 7 

1 0 1 3  1 3 3  

1--} l i  3 1 ~) 4 
2"4 0 2  5 2 5 

1 0 i  4 1 4 4  

26 11 7 i l -9  5 
5-} 0 2 14 2 14 14 

2 0 i  5 1 5 5 
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Tab le  1 ( c o n t . )  

Crystals uvw e UFI 
(ela) ~ 2; Oa(°) (xlO a) (×Z) 

Ti 33/13 24 
Zr 

85.22 
Mg 8/3 11 210 

62.96 

Mg 13/5 18 

63.62 

BeS/2 11 210 
Ti 
Zr 35.10 

Zr 21/8 23 

34.30 

Zn 27/8 11 100 

50.47 

Zn 7/2 17 

49.68 

All 13 001 

Any 27.80 

Be 5/2 13 100 
Ti 
Zr 

Cd 18/5 13 
57.42 

57.42 
Be 51/20 22 
Ti 
Zr 56.94 
Be 5/2 13 210 
Ti 
Zr 76.66 

Ti 18/7 23 
Zr 

77.44 
Mg 21/8 13 210 

85.59 

Zn 7/2 13 I00 

Zn 24/7 15 

Zn 27/8 17 

Mg 8/3 

Ti 21/8 
Zn 
Mg 

Cd 7/2 
Zn 

85.59 

86.18 

86.62 

14 210 

44.42 

15 100 

29.93 

15 210 

29.93 

Table  1 ( c o n t . )  

M1 DSC-1 w Crystals uvw ~ Ur~ 
U1 w (xX) (c/a) 2 2~ Od (o) (xlO a) (XX) 

4 241122  1 1 3 1 1-'-7 7 Cd7/2 15 210 
1 0 2 4 4  0 2 1 0  2 1 0 1 0  Zn 

113 2 01  7 1 7 7 86.18 

5 11 0 0 2 0  ]. 0 01-] Cd18/5 19 
3 5 1 6  1 1 3  1 8 2  

6 5 0 i  2 i 3 2 86.98 

6 18 0 0 2.0 0 0 018 Mg21/8 15 100 
5 82-6 i i  7 i l -516  
310 8 01  2 1 3 2 86.18 

1 11 0 0 2 i 0 0 0 1 7  Mg8/3 17 
2 1 9 1 - 0  l i  5 i 5 6 
4 2 4 9 01 i 2 1 1 86.63 

10 23 0 0 2 i i 0 02"3 Zn27/8 15 210 
2 192-1 1 1 1 0  i 101"2 
4 819 0 1 2 2 3 1 78.46 

8 11 2 9 11 5 J 6 3 Zn7/2 23 
0 71"-8 01  9 2 i l-0 
0 4 7 0 i 2 2 1 J 77.44 

6 17 3 1-4 1 1 7 i ~) 7 Be5/2 17 100 
0 112-8 0 1 14 2 1 14 Ti 
0 6 11 0 J 3 2 1 3 Zr 40.12 

0 15 "I 0 01  3 3 4 0 Be5/2 17 510 
7 8 0  03  4 4 i 0 Wi 
0 013 iO 0 0 01-3 Zr 79.84 

2 13 31-0 l i 3 1 7 3 Cd 18/5 17 100 
3 0 72-0 0 i 1--0 2 11-'0 
6 0 6 7 01  3 2 i 3 40.12 
5 13 3 1~ 1:2 1 2 7 6 Cd7/2 17 100 

0 72"4 0 4  1 4 1 1 
0 5 7 0 i 3 1 3 3 49.68 

6 22 31-7 i 0  § i 11 8 57/16 13 
5 0 1 2 3 4  0 11-7 2 016 
2 0 I0 12 0 i 3 2 0 6 49.29 
2 13 0 0 2 0  1 0 0 13 Mg21/8 17 210 
4 5 32-0 1:2 3 2 5 9 
4 z~ 8 3 0 1 2 i 4 2 49.68 

Be 18/7 17 I00 10 23 0 0 2 0  1 0 023 
7 9 53-6 i 2  4 2 ~J15 Mg 

714 5 01  4 1 7 4 Ti 
Zr 49.68 

2 13 0 0 2 i  i 0 013 
6 12-] i 2  3 3 5 8 8/3 22 
4 8 1  01  2 2 1 i 

50.48 
8 13 61-4 l i  3 1 310 

0 12-8 0 2  "I 2 7 7 Mg8/3 18 100 
0 6 1  01  3 i 3 3 

70.53 
2 15 716 l i 4 iI--2 3 

0 13-2 0 2 ~J ~ ~j ~j All 19 001 

0 7 1  O1 3 1 3  3 
Any 13.17 

10 17 ~] 1-8 i i 4 1 4 1-3 Be5/2 19 210 
0 13-6 0 2  9 2 ~J ~J Ti 
0 8 1 0 1 4 i 4 4 Zr 86.98 

4 14 0 0 2 0  0 0 0 14 Be5/2 19 501 
2101"6 i f  3 4 2 8 Ti 

610 0 2  1 i 3 2 Zr 65.10 

10 15 i "l 11 4 i 3 8 Zn27/8 19 100 
9 0131-4 01  7 2 6 i 
1 0 4 13 0 2  1 4 3 2 26.53 

8 15 0 0 2 1 0 0 0 15 Be 12/5 21 100 
4 11314 1 1 7 1 7 8 Ti 

:2 413 0 i  1 :2 1 i 25.22 

M1 DSC-Iv~ 
U1 w (x~r) 

8 15 0 0 2 0  i 0 01-3 
8 7 12-8 i 2  z~ 2 71-] 

4 8 1  0 i  2 i 4 2 

6 19 0 0 2 0  1 0 019 
9 13"6 i 2  3 2 ~)13 
310 1 0 i  3 1 5 

2 15 714 1 i 4 117 4 
0 12-8 0 2  7 2 7 
0 8 1  0 i  4 1 4 4  

6 17 81-6 l i  4 11-2 5 
0 13-2 0 2  7 2 7 7 
0 9 1  0 i  5 1 5 5  

10 15 0 0 2 i  i 0 015 
6 32-~ i2. 4 3 6 9 
4 8 3  01  2 2 1 i 

8 23 0 0 21 0 0 023 
9 542 12 7 3 713 
612 5 0 i  3 2 3 i 

2 17 21-0 12 1 1 3 1~ 
3 0132-0 05  2 21-0 3 
5 0 613 0 i  3 3 9- i 
2 18 31-0 0 2  3 1 810 
4 3 2 3 - 0  21 2 3 7 4 
7 210 3 l i  1 2 1 3 

4 17 21-} 13 0 3 2 8 
0132"4 0 6  i 6 4 i 
0 513 0 i  3 1 5 

6 17 31-4 i i  7 1 9 
0112"-8 0 i 14 2 11-4 
0 611 01 3 2 1 3 

1 23 4 1 9  i i  9 1 1 2  ~J 
0153-8 0 i 19 2 11-8 
0 815 01  4 2 1 5 

1 17 0 0 2 i  i 0 01-7 
3112-i  i l  4 5 210  
4 811 0 2  i i 3 2 

9 17 312 12 1 2 9 ~] 
9 0112-4 0 4  1 4 1 1 
8 0 711 0 i  z~ 1 4 4 
5 
4 22 41-6 12 J 2121-0 

0 1 4 3 3  04  2 4 2 2 
0 914 01 5 1 3 3 

6 18 61~ i i  3 2 4 
0 63-2 0 2  6 4 8 2 
0 9 6  03  0 3 3 3 

0 21 3 0 05  2 3 2. 0 
5 1 6 0  0 3 5  2 3 0  
0 019 10 0 0 019 

2 19 0 0 21 0 0 017) 
4 9 13-0 12 3 3 5 l"i 
7 612 1 Ol  3 2 3 1 

2 211110  o i  3 i 51-3 
3 6 53-0 13 i ~ z~ -) 
6 2 8 9  i i  0 i 5 4 

5 19 i ~) 10 4 1 5 1 0  
0171-8 o J  ~J 210 1 
0 4 1 7  0 2  i 4 i 2 

10 21 i 8 i 3  1 4 1 1-3 
10 0191-6 05  3 8 2 3 

0 5 1 9  0 2 3  1 3 2  
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Table 1 (cont.) Table 1 (cont.) 

Crystals uvw e UF, 
(c/a) 2 27 Od(°) (xl03) (XX) 

MI DSC- lvi Crystals uvw e UFi 
Ulvl (xX) (c/a) z 22 Od (o) (xlO 3) (xX) 

M1 DSC-1FI 
Ulr~ (x27) 

Cd18/5 21 210 6 21 0 0 
6 936 

64.62 5 10 9 

7/2 25 7 25 0 0 
7 1142 

63.90 6 12 11 

Cd 7/2 21 510 7 22 5 1-4 
Zn 7 3 6 42 

70.53 2 10 7 

Mg21/8 21 1472 2 23 6 7 
13 328 

73.40 4 12 7 

Zn27/8 21 210 7 21 0 0 
3 15 27 

44.41 4 8 15 

Be51/20 22 100 6 22 5 1~ 
Ti 5 0 12 3"4 
Zr 56.94 2 0 10 12 

Be 18/7 23 100 7 23 ] 12 
Mg 7 0 19 24 
Ti 6 0 719 
Zr 34.30 4 

Be 5/2 23 100 2 23 8 20 
Ti 4 0 74-0 
Zr 72.28 7 0 12 7 

Be S/2 23 210 2 23 0 0 
Ti 3 5 13 3-0 
Zr 55.58 6 6 12 13 

Be 5/2 23 20103 2 25 7 10 
Ti 4 17 ]3-0 
Zr 86.26 7 4 14 3 

Cd 18/5 23 100 6 23 8 2-4 
0 748 

72.28 0 10 7 

Cd7/2 23 210 7 23 0 0 
9 542 

77.44 6 12 5 

Cd7/2 23 100 4 23 ] 1"4 
Zn 4 0 19 28 

34.30 0 6 19 

Mg21/8 23 100 2 23 9 2--] 
0 542 

77.44 0 12 5 

Mg21/8 23 210 1 23 0 0 
2 19 21 

34.30 z~ 8 19 

Zn27/8 23 1892 10 25 6 9 
15 l 36 

79.98 4 12 5 

Mg21/8 25 100 2 25 "12--] 
0 1142 

63.90 0 12 11 

Mg8/3 25 210 2 25 0 0 
1 23 16 

23.07 3 6 23 

Zn7/2 25 210 7 25 0 0 
7 1142 

63.90 6 12 11 

2 0  1 0 021 
13 i 3 612 
0 1 3  1 5 3 

2 0  1 0 025 
[ 3  4 3 716 
o 1 ~  i 6 ~  
1~ 2 1 ~1~ 
3 ]  i 3 6 6  
11 1 ] 3 3 

3 2  1 [10  3 
2 i  3 4 2 9  
0 [  ] 2 1 6  

i f  i 0 02"-] 
i l  5 6 3 3  
o ] i  1 3 ]  
1 0 8  111 
0 [ I"7 2 0 1"6 
0 1 3  ] 0 6  
13 0 3 ]11  
16 i 6 4 i 
0 i  z~ 1 7  ,~ 

1 3 ]  ] 5 c ) 
05 ,i ,ilO 5 
0 2 3  3 4 2  

2 0  1 0 023 
13 3 3 514 
0 i ~  i 6 ~  
21 2 112 9 
0 4  1 310 4 
i 0 ~  ] i 5  
i l  4 3_ 4_13_ 
0 3 8  6 8 3  
0 1 3  ~ 5  i 
2 i  0 0 027 
11 7 3 71-3 
o i  3 2 3 1  
l i ~  i ~ 8  

03 i 3 ] i 
12 4 3 513 
0 3  7 610 3 
0 ] 3  4 1 ]  

21 1 0 023 
1 1 11 i lq 11 
0 i  2 2 i 1 
3 i  0 i l l  3 
23  3 4 211 
0 [ 2  2 1 6  

0 3  7 61-0 
0 [ 6  ] 5  i 
] [  i 0 02-3 

02 1 3 i 2 
2 0  [ 0 02-3 
13 4 3 71--6 
0 1 3  i 6 3 

Zn 27/8 25 310 

63.89 

Zr 18/7 25 210 

63.90 

9 26 3 9 3 0 2  6 i 7 
5 10 4-3 1 3 3 3 3 15 
41211  0 [  2 i 4 3 

6 25 0 0 ] 0  i 0 02"3 
7 11 3"6 i 1 9 i 182-i 
71411  0 i  4 1 7 

calculated case e = - e  1 = e 3, e 2 = 0. It is seen in Table 
1 that a small deviation of the c/a ratio (e.g. for Be, Ti, 
Zr) may lead to a large change of the state of 
deformation. The cell M1 is calculated as a Niggli 
reduced cell (Krivy & Gruber, 1976). Miller indices of 
its j th  base vector are given by the j th column of the 
matrix [U1] m. [Each base vector of M2 is defined 
analogously by the matrix [U2]F2 , where F2 is a 
coordinate system related to the hexagonal unit cell of 
lattice 2, coinciding with F1 for 0 a = 0. The cells M1 
and M2 can be directly derived from the matrix [U]FI 
by using an algorithm proposed by Bonnet (1976).] 
The same algorithm allows the determination of the 
DSC-1 and DSC-2 lattices which define the possible 
Burgers vectors of intrinsic grain-boundary dislo- 
cations, with reference to lattices 1 and 2 respectively 
(Bollmann, 1970; Bonnet & Durand, 1975). The 
rational components of the base vectors of the DSC-1 
lattices are given in the last column of the tables by 
the matrices [DSC-1]F1. The matrices [U2]F2 and 
[DSC-2]r2 can be obtained from 

[U21~2 = [U-1]rl .  [U1]FI 

[DSC-2]v2 = [U-1]vl. [DSC-1] m. 

The tables show, in particular, that the disorien- 
tation axes are: for carbon [001], [100], [210], [310], 
[10,0,1], [10,5,1]; for the hexagonal metals [001], 
[100], [210], [510], [501], [14,7,2], [18,9,2], [20,10,3]. 
All the axes, for disorientations giving rise to CSL's for 
2; < 25 lie in mirror planes of symmetry. Only for 
higher values of 27 are axes of lower symmetry required. 
When an axis not lying in a plane of symmetry occurs, 
the rotation and its inverse arise from different sets of 
solutions and no twin description exists. One such 
example (corresponding to the case of 27 = 39, [321] in 
cubic crystals) is 27 = 49 with (c/a) 2 = 5/2. Here the 
disorientation solutions are 930)(5  21 0) 

24 80 a n d ~  2 9 - 7 0  . 

14 - 2 8  21 - 26 21 
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C o n c l u s i o n s  

Table 2. Near-coincident cells for  carbon a and other 
related crystallographic quantities 

Exact coincidence 27 = 7, 13, 19 around the c axis are omitted. 

Crystals uvw e Uvt M1 
(c/a) 2 X Od(°) (xl0 a) (X27) Ulv, 

15/2 

51/7 

15/2 

15/2 

15/2 

15/2 

15/2 

22/3 

23/3 

15/2 

15/2 

15/2 

15/2 

117/16 

36/5 

15/2 

15/2 

7 100 5 

64.62 
24 8 

65.38 
11 100 3 

35.10 
11 210 6 

84.78 
13 100 6 

76.66 
13 210 5 

57.42 
17 210 4 

40.12 
25 4 

40.54 
17 210 5 

72.90 
23 6 

72.28 
17 310 6 

79.84 
19 10 5 1 5 

65.10 
19 100 6 

86.98 

25 7 

87.71 
23 100 10 

42.34 
23 100 5 

55.58 
23 I0 0 1 6 

86.26 

7 210 l i  ~ 
0 32--6 02  3 
0 2 3  01 i 
24 73-4 l i  cj 
0 1068 0 2 1 8  
o 71o Ol 3 

_ 

11 110 11 5 
0 9 20 0 1 10 
0 2 9  O i l  
11 0 0 2 1 0  
5 130 13 3 
2 4 1 0 i l  

13 52-0 i 2  
0 34-0 04  3 
0 4 3  0 i  2 
13 0 0 2 1 0  
3 730 12 5 
2. 4 7 O i l  
17 0 0 20  1 
2 133-0 i i  8 

413 01 1 
25 0 0 20  1 
3 194-4 1 i 1--i 

619 01 i 
17 0 0 20  1 
6 54-4 12 

6 5  O l i  
23 0 0 20  1 
8 76"-0 i 2  8 
J, 8 7  0 1 2  
18 31-0 32 2 
5 250 13 4 
7. 6 3 0 i l  
21 610 31 i 
11 54--0 2 i  4 

6 9  01 1 
19 93-0 12 5 
0 160 0 3 10 
0 6 1  0 i  3 

25 1"~3~ i 2  6 
0 1 78 03 13 
0 8 1  0 1 4  
23 32q i 4  3 
0 1748 08  7 
0 517 01 2. 
23 53-O i 3  
0 136-0 06 
0 613 0 i  3 
25 1-7 2-0 4 2 3 
7 27-0 13 4 
2 6 3  0 i l  

DSC-lel 
(xZ;) 

I i 6 
2 5 5  
i 1 1  
i2-'i 3 

1-8 1"-8 
_ - 

1 3 3 
1 6 5 

11-0 
2 1 i 
0 011 

i 2 1 
2 9 4  
4 5 5  

O- 013 
5 3 8  
i 2 1 
0 017 
1 1 5 1 6  
i 2 1 
0 025 
i 2--) 24 
1 3 1  
0 017 
211 2 
i 3 i 
0 023 
2 1-5 4 

1 810 
5 6 i 

i 317 
4 718 

3 8 5 
6 310 
~ i 3 

d 31-d 
2 1 3  
415 8 
8 ~  
1 2 2  
314 9 
6 5 5 
1 3 3  
2 322 
7 i 8 
2 3 i 

The two techniques used provide consistent alternative 
routes to the determination of  coincident cells (and 
constrained coincident cells) for noncubic crystals.  
They  provide together a check tha t  the input variables 
and constraints  do not lead to spurious exclusion of  
any results. Both techniques have their limitations but it 
appears  possible that  the rat ional  technique may  
become the more  efficient when values of  27 higher than  
25 are required for two identical crystals (if the 
symmet ry  is higher than  monoclinic). The case of  
matching two different crystals as for a phase boun- 
da ry  has not  yet been treated by the rat ional  (c/a) 2 
technique (or equivalent). 

It is clear that  there are indeed m a n y  solutions 
available even for quite small imposed constraints,  even 
allowing for the fact tha t  these are often grouped 
together with closely equal disorientations correspond-  
ing to different rational values of  (c/a) 2. Which  
solution, if any,  is to be preferred in a given case will be 
determined by energy considerat ions which m a y  well 
depend upon the gra in-boundary  plane in question. In 
m a n y  such cases,  however,  it will require careful and 
precise experimental  measurements  to distinguish be- 
tween the alternative possibilities which frequently 
concern the same rotat ion axis and closely related D S C  
lattices and hence gra in-boundary  dislocation Burgers 
vectors.  Nevertheless,  the conclusion remains that ,  for 
noncubic crystals,  there are m a n y  possibilities of  
ordered structures in grain boundaries.  

The authors would like to acknowledge additional 
assistance for this project through NATO grant No. 
1650 and to thank Miss S. R. Varney for her patient 
preparation and typing of the manuscript. 
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Abstract 

A systematic approach is presented for obtaining 
cylindrical distribution functions (CDF's) of non- 
crystalline polymers which have been oriented by 
extension. The scattering patterns and CDF's are also 
sharpened by the method proposed by Deas and by 
Ruland. Data from atactic poly(methyl methacrylate) 
and polystyrene are analysed by these techniques. The 
methods could also be usefully applied to liquid 
crystals. 

1. Introduction 

There are two reasons for investigating the wide-angle 
X-ray scattering (WAXS) from oriented non- 
crystalline polymers. Firstly, it can aid in the inter- 
pretation of features in the scattering [or in the radial 
distribution function (RDF)] of unoriented polymers, 
by separating peaks into those from scattering within 
chains and those from scattering between chains 
(LoveU, Mitchell & Windle, 1980). Secondly, it may 
show changes in structure that take place when the 
polymer is deformed. In this paper we present a 
systematic approach to the calculation of cylindrical 
distribution functions (CDF's) which assists both these 
aims. 

To investigate the structure of unoriented polymers, 
we have previously adopted the technique of comparing 
scattering calculated for models with that measured 
experimentally (i.e. the comparison is made in 
reciprocal space). Peaks in the experimental scattering 
can be separated into intrachain peaks, which intensify 
towards the extension direction (meridian) when the 
material is deformed, and interchain peaks, which 
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intensify perpendicular to the extension direction 
(towards the equator). This separation cannot easily be 
carried over into the RDF since features in the RDF 
come from more than one peak in the scattering. Hence 
a CDF (or at least its meridional and equatorial 
sections) must be prepared for the deformed materials 
before the RDF can be reliably separated into 
intrachain and interchain features. 

To investigate the structure of oriented polymers, we 
have also made the comparisons in reciprocal space by 
using an azimuthal sharpening technique to improve the 
apparent degree of chain orientation (Lovell & Windle, 
1976, 1977). This gives a pattern similar to a diffuse 
fibre pattern which may be more easily interpreted. 
Although unoriented polymers are frequently analysed 
with RDF's, few workers have prepared CDF's for 
oriented polymers since Norman (1954) first calcu- 
lated the CDF of cellulose. This may be due to the 
difficulty of interpretation since, as we hope to show, 
CDF's are not much more difficult to prepare than 
RDF's. 

We shall first compare the two methods which have 
been used for calculating CDF's and show how 
intermediate results in the procedure can assist in their 
interpretation. The approach is then illustrated with 
results from poly(methyl methacrylate) (PMMA) and 
polystyrene (PS) deformed close to their glass- 
transition temperatures. 

2. Cylindrical distribution functions 

The CDF is the cylindrical average of the normalized 
self-convolution of the electron density, and is defined 
by 

W(r) = 4zcr[p(r) - P0] 
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