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Abstract

Crystallographic data concerning geometric properties
of hexagonal lattices of C,, Zn, Be,, Ti,, Zr,, Mg and
Cd are obtained from two different computation
techniques. These properties are related to the relative
orientations of identical hexagonal lattices 1 and 2
which superimpose two multiple cells M1 and M2
within a given small deformation. These orientations
are listed for ratios £ = Ivolume of cells M1 (or
M2)/volume of the unit celll varying from 1 to 25.
Their number are limited by choosing all the principal
strains transforming M1 into M2 less than or equal to
1%.

Introduction

Three techniques have been used to determine the
relative orientations of identical hexagonal crystals
which give rise to a near coincidence of two cells of the
two crystal lattices 1 and 2, cells denoted hereinafter
M1 and M2 respectively. [This has been referred to by
previous workers as a ‘coincidence’ or ‘near-coinci-
dence site lattice’ or ‘orientation de macle’,* where the
number X, (or Z,) is defined by the ratio volume of M 1
(or M2)/volume of the unit cell.] Two techniques
depend either upon searching for vectors of common
length arising from rational values of (c/a)?* (Fortes,
1973; Warrington, 1975) or in searching for coin-
cidences arising from rotation about specific axes,
chosen a priori, of (low) crystallographic index
(Bruggeman, Bishop & Hartt, 1972). The first method
derives from that used by Warrington & Bufalini

* We note for the benefit of our readers whose mother tongue is
English that the term ‘orientation de macle’ as defined by Friedel
(1964) is more general a concept than the nearest English equivalent
of ‘twin’ used in its restrictive sense.
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(1971) for cubic crystals; the second from the use of a
‘generation function’ typified by Ranganathan (1966)
and Goux (1961). The third technique (Bonnet &
Cousineau, 1977), tested on Zn/Zn and Ni,Al (cubic)/
Ni,Nb(orthorhombic), depends on a numerical method
of calculation capable of treating the case of general
lattices and envisaged in part by Santoro & Mighell
(1973). It takes into account the experimental [rather
than idealised or rational values of (c/a)?] values of the
lattice parameters. The technique determines relative
orientations that, with additional imposed constraints
(which may be chosen arbitrarily small) on M1, will
give full or true coincidence with M2.

Determination of relative orientations

In searching for a ‘constrained coincidence’ the worker
must compromise and set limits on the deviation from
exact coincidence that is to be allowed. In the
numerical method (Bonnet & Cousineau, 1977) this is
represented by a maximum value of S = lg,| + lg,| +
les| where €, €,, &, are the principal strains of the pure
deformation D transforming lattice 1 into lattice 2. D!
transforms lattice 2 into a fictitious lattice denoted
lattice 2’, which can be exactly superposed onto lattice
1 (Bonnet & Durand, 1975). The unit cell of this CSL
(coincidence site lattice) is defined either by M1 or by
the deformed cell M2, denoted M?2'. In order to save
computer time and attempt to make the search efficient,
limits are set on 46, the value by which the angle of
rotation about some determined axes is incremented,
and on AU, the rounding term to obtain integer
elements of the matrix luig, transforming M1 into
M?2'. The determinant of this matrix, expressed in the
coordinate system F1 attached to the hexagonal unit
cell of lattice 1, is equal to X,/Z, (see the above
reference). For identical crystals and small deviation
from exact coincidence, 2|, = &, = X.
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To gain an insight into the relevant merits of the
alternative methods, the results for C and for the
hexagonal metals Zn,* Be,, Ti,, Zr,, Mg, Cd were
derived by the above technique and that of the rational
(c/a)? route of Warrington (1975). The latter technique
assumes that all constrained coincidences lie close to
perfect coincidence of ideal crystals with nearby
rational values of (c/a)? it is necessary, of course, to
search for all relevant values of (c/a)? that approxi-
mate to within an arbitrary deviation from the
experimental value. This value is measured with great
accuracy for all the hexagonal crystals here chosen.
The two techniques give consistent results and find all
relevant coincidence provided that Au is made large
enough and that the integer ratios (c/a)? contain all
values up to sufficiently large integers. The tables
presented show that, for example for zinc, it was
necessary to increase 4u from 0-3 to 0-4. On the other
hand, many additional solutions for the necessary and
quoted values of (c¢/a)? are found to be excluded from
the table by the imposed condition of S,,,,.

Presentation of the results

Tables 1 and 2 have been prepared using the crystal
parameters reported by Donnay & Ondik (1973)
except for Ti (Mitchell, 1979) and C_, (Cullity, 1967),
and the following values of calculation variables:

Be,, Ti,, Zr, c/a=1.589 + 0-004;
Mgc/a=1-624,Cd c/a=1-885, C_c/a=2-723;
L =254L=05A,S,  =0-021, Au = 0-4,
460 = 0-003.

For the rational (c/a)? technique all values of m/n
where m and n are integers up to m = 117 and n = 20
were investigated; many ratios (typically from high m
and n) where c/a lies within a deviation of the
experimental value of ¢/a do not give rise to solutions
for ' < 28.

The values of the rotation axis and angle correspond
to the disorientation value [i.e. the lowest rotation angle
that may describe a given relative orientation provided
that the axis lies within the unit stereographic triangle;
since the two crystals are otherwise identical this
includes, therefore, a reduction via the inverse rotation
as well as all possible symmetry rotations, see, for
instance, Mackenzie (1958) and Bonnet (1980)].

For a complete understanding of the geometric
quantities mentioned in the tables, the reader must refer
to the work of Bonnet & Cousineau (1977). [uvw] and
6, are the pairs of disorientation axis/angle for which a
cell M2 is near coincident to a cell M1. The value ¢
describes the intensity of the deformation, since in each

* In Bonnet & Cousineau (1977), the two last solutions Z = 21
are equivalent. One of them has to be removed for the benefit of a =
= 23 (¢*/a* = 27/8) described in this paper.
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Table 1. Near-coincident cells for the hexagonal metals
Be,, Cd, Mg, Ti,, Zn, Zr, and other related crystallo-
graphic quantities

The rotation axes and angles are expressed as disorientation values.
Entries are ordered in increasing 2 value and increasing rotation
angle except where, for a given rotation axis and more than one
ideal ¢/a value, more than one CSL is produced at closely similar
rotation angles. In such cases successive entries quote X values and
rotation angles and the axis symbol is not repeated. The axis is not
repeated where it is unchanged in succeeding entries in the column,
thus four entries for Cd 7/2, X =9 to Cd 18/5, Z = 23 all share the
same rotation axis [210]. The values of ¢ quoted are for the metal
appearing in the same line of column one.

Crystals uow € Ugy Ml DSC-1,,
(c/a)? Z  6,(°) (x10%) (x2) Ulg, (xZ)
All 7 001 0 830 031 310
350 023 230

Any 2179 007 100 007
Be 5/2 7 210 2 700 201 o007
Ti 4 2310 112 151
Zr 64-62 7 243 011 121
18/7 25 6 2500 201 0025
7113 1196 118121

63-90 71411 014 174

Ccd1/2 9 210 6 900 201 009
2514 113 171

56-25 245 011 121

Zn1/2 9 6 900 201 0009
2514 113 171

56-25 245 011 121

Zn17/5 22 6 2200 200 002
5123¢ 119 1ij20

56-94 51012 012 152

Cd18/5 23 52200 201 0 023
5133 118 118 3

55-58 51013 013 1353

Mg 21/8 9 100 -2 9327 114 1354
0514 017 2138

56-25 045 012 211

Mg27/10 23 10 23 518 119 111 9
0133 0118 2 118

55.58 01013 01 5 2135

Zn27/8 9 100 10 939 i11 336
0318 033 633

70-53 043 012 1i1ii

Mg 8/3 10 210 —6 10 00 200 0010
4216 121 246

78.46 362 012 132

Ccd18/5 11 100 6 11 512 112 13 8
0124 025 2355

84-78 051 013 133

Be 5/2 11 2 11510 113 183
Ti 4 0120 025 2535
Zr 84.78 7 061 013 133
Cd7/2 13 8 13614 113 1103
0128 027 277

85-59 061 013 133

Ti 18/7 13 10 13612 113 19 4
Zr 7 0124 025 2535
85-59 071 014 144

Cd39/11 24 1 241126 117 119 5
0 252 0214 314714

8522 011 2 015 1535
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Table 1 (cont.)

Crystals uow € U, Ml DSC-1g,

Fl

(c/a)? Z 0,(°) (x10%) (xX) Ul (xX)
Zn27/8 25 310 9 26 39 302 617
51045 133 53515

63-89 41211 01 2 143

Zr18/7 25 210 6 2500 201 0025
71136 11 9 11821

63-90 71411 01 4 174

calculated case ¢ = —¢, = ¢;, €, = 0. It is seen in Table
1 that a small deviation of the ¢/a ratio (e.g. for Be, Ti,
Zr) may lead to a large change of the state of
deformation. The cell M1 is calculated as a Niggli
reduced cell (Krivy & Gruber, 1976). Miller indices of
its jth base vector are given by the jth column of the
matrix [U1l,, [Each base vector of M2 is defined
analogously by the matrix [U2l.,, where F2 is a
coordinate system related to the hexagonal unit cell of
lattice 2, coinciding with F1 for 8, = 0. The cells M1
and M2 can be directly derived from the matrix [U].,
by using an algorithm proposed by Bonnet (1976).]
The same algorithm allows the determination of the
DSC-1 and DSC-2 lattices which define the possible
Burgers vectors of intrinsic grain-boundary dislo-
cations, with reference to lattices 1 and 2 respectively
(Bollmann, 1970; Bonnet & Durand, 1975). The
rational components of the base vectors of the DSC-1
lattices are given in the last column of the tables by
the matrices [DSC-1],. The matrices [U2]., and
[DSC-2]., can be obtained from

(Us)po = U]g . LU R,y
[DSC-2]z, = [U!];,.[DSC-1],,.

The tables show, in particular, that the disorien-
tation axes are: for carbon [001], [100], [210], [310],
[10,0,1], [10,5,1]; for the hexagonal metals [001],
[100], [210], [510], [501], [14,7,2], [18,9,2], [20,10,3].
All the axes, for disorientations giving rise to CSL’s for
X < 25 lie in mirror planes of symmetry. Only for
higher values of X are axes of lower symmetry required.
When an axis not lying in a plane of symmetry occurs,
the rotation and its inverse arise from different sets of
solutions and no twin description exists. One such
example (corresponding to the case of £ = 39, [321] in
cubic crystals) is Z = 49 with (¢/a)?> = 5/2. Here the
disorientation solutions are

41 9 30 56 —21 0
(-5 24 80 |and| 25 9 =70}
14 -28 21 -4 26 21
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Table 2. Near-coincident cells for carbon a and other
related crystallographic quantities

Exact coincidence Z = 7, 13, 19 around the c axis are omitted.

Crystals uow € Up, M1 DSC-1g
(clay I 6;(°) (x10%) (xX)  Uly (xZ)
15/2 7 100 s 7 310 1132 116

0 320 025 255

6462 0 23 o011 111

51/7 24 8 24 73 116 1213
01068 0218 21818

65-38 0 710 013 133

15/2 11 100 3 11 i 115 1635
0 920 0110 2 110

35-10 0 29 011 211

15/2 11 210 6 1100 210 00711
5 13 133 358

84.78 2 41 011 121

15/2 13 100 6 13 520 123 294
0 340 04 5 455

76-66 0 43 0i2 122

15/2 13 210 5 1300 210 0013
3 73 125 538

57-42 2 47 011 121

15/2 17 210 4 1700 201 0017
2133 118 11516

40-12 2 413 011 121

22/3 25 4 2500 201 0025
31944 1111 12224

40-54 3 619 011 131

23/3 17 210 5 1700 201 0017
6 544 126 211 2

72-90 3 65 011 131

15/2 23 6 23 00 201 0023
8 760 128 215 4

72-28 4 87 012 142

15/2 17 310 6 18 310 322 1 810
5 250 134 561

79-84 2 63 o011 213

15/2 19 1051 5 21 610 311 1307
11 540 214 4 718

65-10 2 69 o011 132

15/2 19 100 6 19 930 125 385
0 160 0310 6 310

86-98 0 61 013 213

11716 25 7 251239 126 3148
0 178 0313 6 316

87-71 0 81 014 213

36/5 23 100 10 23 324 14 3 475 8
0 1748 08 71 8 77

42-34 0 517 012 122

15/2 23 100 s 23 33 133 3149
0 1360 06 5 6 55

55-58 0 613 013 133

15/2 23 1001 6 2510720 423 2322
7 270 134 718

8626 2 63 011 231

NEAR-COINCIDENT CELLS FOR HEXAGONAL CRYSTALS

Conclusions

The two techniques used provide consistent alternative
routes to the determination of coincident cells (and
constrained coincident cells) for noncubic crystals.
They provide together a check that the input variables
and constraints do not lead to spurious exclusion of
any results. Both techniques have their limitations but it
appears possible that the rational technique may
become the more efficient when values of X higher than
25 are required for two identical crystals (if the
symmetry is higher than monoclinic). The case of
matching two different crystals as for a phase boun-
dary has not yet been treated by the rational (c/a)’
technique (or equivalent).

It is clear that there are indeed many solutions
available even for quite small imposed constraints, even
allowing for the fact that these are often grouped
together with closely equal disorientations correspond-
ing to different rational values of (c/a)*>. Which
solution, if any, is to be preferred in a given case will be
determined by energy considerations which may well
depend upon the grain-boundary plane in question. In
many such cases, however, it will require careful and
precise experimental measurements to distinguish be-
tween the alternative possibilities which frequently
concern the same rotation axis and closely related DSC
lattices and hence grain-boundary dislocation Burgers
vectors. Nevertheless, the conclusion remains that, for
noncubic crystals, there are many possibilities of
ordered structures in grain boundaries.

The authors would like to acknowledge additional
assistance for this project through NATO grant No.
1650 and to thank Miss S. R. Varney for her patient
preparation and typing of the manuscript.
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Abstract

A systematic approach is presented for obtaining
cylindrical distribution functions (CDF’s) of non-
crystalline polymers which have been oriented by
extension. The scattering patterns and CDF’s are also
sharpened by the method proposed by Deas and by
Ruland. Data from atactic poly(methyl methacrylate)
and polystyrene are analysed by these techniques. The
methods could also be usefully applied to liquid
crystals.

1. Introduction

There are two reasons for investigating the wide-angle
X-ray scattering (WAXS) from oriented non-
crystalline polymers. Firstly, it can aid in the inter-
pretation of features in the scattering [or in the radial
distribution function (RDF)] of unoriented polymers,
by separating peaks into those from scattering within
chains and those from scattering between chains
(Lovell, Mitchell & Windle, 1980). Secondly, it may
show changes in structure that take place when the
polymer is deformed. In this paper we present a
systematic approach to the calculation of cylindrical
distribution functions (CDF’s) which assists both these
aims.

To investigate the structure of unoriented polymers,
we have previously adopted the technique of comparing
scattering calculated for models with that measured
experimentally (i.e. the comparison is made in
reciprocal space). Peaks in the experimental scattering
can be separated into intrachain peaks, which intensify
towards the extension direction (meridian) when the
material is deformed, and interchain peaks, which
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intensify perpendicular to the extension direction
(towards the equator). This separation cannot easily be
carried over into the RDF since features in the RDF
come from more than one peak in the scattering. Hence
a CDF (or at least its meridional and equatorial
sections) must be prepared for the deformed materials
before the RDF can be reliably separated into
intrachain and interchain features.

To investigate the structure of oriented polymers, we
have also made the comparisons in reciprocal space by
using an azimuthal sharpening technique to improve the
apparent degree of chain orientation (Lovell & Windle,
1976, 1977). This gives a pattern similar to a diffuse
fibre pattern which may be more easily interpreted.
Although unoriented polymers are frequently analysed
with RDF’s, few workers have prepared CDF’s for
oriented polymers since Norman (1954) first calcu-
lated the CDF of cellulose. This may be due to the
difficulty of interpretation since, as we hope to show,
CDF’s are not much more difficult to prepare than
RDF’s.

We shall first compare the two methods which have
been used for calculating CDF’s and show how
intermediate results in the procedure can assist in their
interpretation. The approach is then illustrated with
results from poly(methyl methacrylate) (PMMA) and
polystyrene (PS) deformed close to their glass-
transition temperatures.

2. Cylindrical distribution functions

The CDF is the cylindrical average of the normalized
self-convolution of the electron density, and is defined
by

W(r) = 4ar[p(r) — p,]
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